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The eigenvalue equation for three-dimensional waves in parallel and cross flows 
parallel to a fluid discontinuity has been considered for spatially growing waves. 
The discontinuity plane (2, y plane) is perpendicular to the gravitational accelera- 
tion and consists in general of a jump in speed, in flow direction and in density. 
With the assumption of waves which are periodic in time and periodic in the 
y direction, the eigenvalue equation is solved for the complex wavenumber a in 
the x direction. These waves are used to Fourier synthesize the wave trails 
generated by a time-periodic disturbance with a Gaussian amplitude distribution 
e--h@ along the y axis. Lines of constant phase and lines of constant amplitude 
within the wave trail have been illustrated for some examples. 

1. Introduction 
Consider an inviscid and incompressible flow field in Cartesian co-ordinates 

x, y and z (figure 1). The fluid has a constant density p1 and a constant speed 
u1 > 0 in the half-space x 2 0 and it has a constant density pz and constant speed 
u2 > 0 in the half-space x < 0. The velocities in the upper and lower half-spaces 
are perpendicular to the z axis and inclined at  angles I!?, and OZ to the x direction. 
The fluid discontinuity in the x, y plane is perpendicular to the gravitational 
acceleration g and this acceleration is antiparallel to the x axis. Such a cross flow 
is in general unstable against small disturbances. Consider a small displacement 
~ ( z  = 0) N exp ( - hy2 + iyt) of the discontinuity surface in the x direction at  the 
y axis, where y > 0 is a given circular frequency, t is time and h is a positive 
constant. The above displacement is periodic in time and has a significant ampli- 
tude only within a finite range at  the y axis; i.e. the displacement is concentrated 
near theorigin of the co-ordinate y. A Gaussian amplitude distribution at the 
y axis represents an especially simple example of a concentrated disturbance. 
As a consequence of this excitation at the y axis one intuitively expects the 
development of a wave pattern which grows within a strip in some direction away 
from the y axis, where the excitation originates, as indicated in figure 1, and this 
is confirmed by the results in $4.  The resulting time-periodic and spatially 
growing wave pattern will be referred to as spatially growing wave trail. 

Spatially growing wave trails are interesting since they might be found in any 
unstable shear flow into which a localized periodic disturbance has been intro- 
duced. Local vibrations of the wall below a boundary layer might give rise to 
similar wave patterns. Wave trails might occur in meteorological configurations. 
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FIGURE 1. Fluid discontinuity and wave trail: top view. 

Wavy cloud patterns confined within a trail have been observed occasionally. 
Shear layers have a finite thickness but the limiting case of an inviscid fluid 
discontinuity should provide some insight into the development of wave trails. 

The stability of an inviscid fluid discontinuity in a parallel flow has been con- 
sidered by Kelvin (1910) for temporally growing waves. The wave trails con- 
sidered have to be Fourier synthesized from spatially growing waves which are 
periodic in time and in the y direction and which show a growth rate in the 
x direction. Spatially growing waves have been considered only recently by 
Gaster (1962, 1965), Michalke (1965), Maslowe & Thomson (1971) and Mattingly 
& Criminale (1971) for various parallel flows. The physical significance of these 
waves has been demonstrated by Freymuth (1966), Mattingly & Criminale (1972) 
and Davey & Roshko (1972). 

The neutral stability of a fluid discontinuity in a cross flow has recently been 
considered by Agrawal & Agrawal (1969). A cross flow, however, can be trans- 
formed into a parallel flow by means of a Galilean transformation and since 
a neutral wave remains neutral if seen from a moving reference frame (in which 
the cross flow appears parallel) physically nothing new is added. On the other 
hand a spatially growing wave in a cross flow, if seen from the moving reference 
frame, will appear to grow in space as well as in time and thus cannot be inferred 
from a spatially growing wave in parallel flow. Hence an interesting aspect is 
added by a cross flow. 
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2. The eigenvalue equation 
The eigenvalue equation for the stability of an inviscid fluid discontinuity in 

a parallel flow (8, = 0, = 0) as derived in Lamb’s (1932)  book can be extended 
for a cross flow. For a displacement of the form 

7 = exp[i(ax+Py+yt)l, (1) 

where a and /3 are the wavenumbers in x and y directions, the eigenvalue equation 
for temporally and spatially growing waves reads 

a2 + 2a(a,P+ azy)  + b,P2 + b,y2 + 2b,& + 2c8 = 0 .  ( 2 )  

a, = (p,u2, sin 8, cos 0, +p,u; sin 8,cos O2)/jL; u, = (plul cos O,+p,uz cos 8,)/h; 
b, = (p1~~sin281+pzu~sin2e,)/h; b, = (p l+pz ) /h ;  b, = (~1~1~ in8 ,+p ,~zs in8Z/k ;  
c = ( p 1 - p 2 ) g / 2 h ; h  = ( p 1 ~ ~ ~ o s 2 8 1 + p 2 ~ ~ ~ ~ ~ 2 ~ 2 ; a n d 8  = (a2+P2)+withRe8 > 0. 
If h approaches zero (2) has to be multiplied by h before further evaluation. 
Solving (2) for a in case of negligible gravity effects and for h + 0 yields 

a(c = 0) = a. = -(a,P+a,y) 

-t i [ b l ~ 2 + b 2 y 2 + 2 b , ~ y - ( a l P + a , y ) 2 ] ~ .  (3) 

a 21 ao-c(a~+P2)4/(ao+alP+a ZY). (4) 

Taking small gravity effects into account yields approximately 

The above waves grow in the propagation direction if the sign in front of the 
square root in ( 3 )  is properly chosen. Equations ( 3 )  and ( 4 )  are too general for 
a meaningful discussion. The dependence of a on the three-dimensionality of the 
waves, the effect of a cross flow and the effect of gravity will be discussed later 
by means of some examples. 

3. Fourier synthesis of wave trails 
The wave trail resulting from a time-periodic disturbance 

~ ( x  = 0 )  = exp ( - hy2 + iyt) 
with Gaussian amplitude distribution and given frequency y will be Fourier 
synthesized from the waves considered in 3 2. The representation of q(x = 0) as 
a Fourier integral is 

J - W  

Consequently one obtains a dependence on x of 

Since the exponent f(P) = - B2/4h + iax is in general a complicated function, an 
analytic evaluation of the Fourier integral is not possible. For an approximate 
evaluationf(P) will be expanded into a Taylor series around the value ,f3 = Po a t  
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which the real part off (8) has a maximum and only terms up to second order in p 
will be taken into account. Thus 

f(p) = -/32/4A+ iax N f+Lff2 + (/?-Po - 2Lf f)2/4L, (7) 

Inserting (7)  into (6) yields an approximate result for 7: 

7 = (L/h)$exp [i(p0y+yt) + f - L ( ~ - i f ) ~ ] .  (8) 
Fourier synthesis of waves has recently been applied by Benjamin (1961), 

Criminale & Kovasznay (1962)  and Gaster & Davey (1968) to a pulsed point 
disturbance in parallel shear flows. 

4. Some examples 
Since the wave-trail equation (8) involves many parameters its application 

and consequences will be discussed by means of specific examples. Other examples 
can be treated similarly. 

4.1, ParallelfEow, gravity neglected (8, = 8, = 8 + &I-, c = 0)  

It follows from (3) that 

Equation ( 9 )  shows that the spatial growth rate is independent of p and that 
velocities enter the growth rate as the velocity difference u1 - u2 but also appear 
in the sum of energy densities p1u:+p2u$. To calculate the wave trail we need 

The real part off(P) has a maximum a t  /3 = Po = 0. Consequently 

f ' = -  ixtan8 and L = A. Using ( 8 )  the h a 1  result is 

(10) 

To ensure that the wave grows in the propagation direction the positive sign in 
front of the growth rate applies if u1 - u2 > 0, otherwise the negative sign applies. 

Prom (10) it follows that the lines of constant phase are parallel to the y axis 
and they move with constant phase speed in the x direction. Lines of constant 
amplitude are parabolas with their symmetry axes showing in the flow direction. 
These results are illustrated in figure 2 for p1 = p2, u2 = 0, 8 = an and 
y/u,hB = 2-4 at a time t = 0. In  this case 

~ ( t  = 0) = exp [ - ix' + xf - (y' - x ' ) ~ ] ,  (11) 
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FIGURE 2. Lines of constant phase 4 and of constant amplitude function $ of the wave trail, 
p1 = pz, u2 = 0, e = in, y/u,h* = 2-4 at a time t = 0. 

where X I  = htx and y’ = Aty are dimensionless co-ordinates. Lines of constant 
phase 9 = x‘, and lines of constant amplitude function @ = x‘- ( Y - x ’ ) ~  are 
shown. If amplitudes smaller than ec2 of the wave trail are considered as insignifi- 
cant the wave trail is bounded by a parabola $ = - 2 = x‘ - (y’ - x’)2, Hence the 
wave trail is limited to a strip which spreads parabolically in the flow direction. 

4.2. The effect of a crossJEow 
Consider the simple cross flow u1 = u2 = u, p1 = p ,  = p, 8, = - 8, = 8 =I= in. It 

For waves growing in the propagation direction the minus sign in front of 
i/3 tan 8 applies if /3 sin 8 > 0, otherwise the positive sign applies. The growth rate 
is determined by the wavenumber /3, i.e. only three-dimensional waves are 
growing, owing to the discontinuity in the y component of velocity. For two- 
dimensional waves (P = 0) the growth rate is zero, owing to the absence of 
a discontinuity in the x component of velocity. 

 follow^ from (3) that a = - y/u cos 8 ip tan 8. (12) 

To calculate the wave trail we need 

P2 - Y X  
4h ucose7 f(P> = --++xtanB-i- 

Po = T 2hx tan 0, f = Ax2 tan2 0 - iyx/u cos 8, f’ = 0 and L = A. 
43 F L M  58 
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FIGURE 3. Lines of constant phase 4 end of constant amplitude A = e~ of the wave trail. 
p1 = pz, u1 = u2 = a, o1 = - ez = in, y / u ~ +  = 2-+ at a time t = 0. 

We obtained two maxima of equal significance. Calculating 7 for each maximum - - .  
from (8) and summing yields 

7 = 2 cos (2hxy tan 19) exp i y  [ (t - - zc czs 8) + A tan2 0x2 - 

Summing the results for both maxima gives a reasonable approximation only if 
the maxima are sufficiently separated from eac hother, i.e. for large x. An analytic 
representation for the region near the origin of the wave trail is not possible. 

Equation (1 3) represents a wave trail with lines of constant phase parallel to 
the y axis which move with a phase speed u cos 8 in the x direction. Lines of con- 
stant amplitude are transcendental functions. These results are illustrated in 
figure 3 for 8 = in and y/uh* = 2-4 at a time t = 0. In  this case 

~ ( t  = 0) = 2 cos 2x'y' exp ( - ix' + xt2  - ~ ' 2 ) -  

Since the y' axis is a symmetry axis, representation will be restricted to one 
quadrant. If amplitudes smaller than e--2 are considered as insignificant the wave 
trail is bounded by a hyperbola yI2 - xP2 = 2 +In 2, i.e. for large x the wave trail is 
concentrated between straight lines x' = rty' parallel to the two cross-flow 
directions. The lines of constant amplitude A = e@ = 2 cos 2 2 ' ~ '  exp (d-2 - y'2) 

represent an elaborate interference pattern. 

(14) 
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4.3. The effect of gravity 
To demonstrate the effect of gravity, consider the simple case where 0, = 82 = 8, 
u2 = 0 and c < 0. It follows from (4)  that 

a 2: - y/ul + c( 1 -p%z,/4y2) - i [y /u ,  + c( 1 +p";/4y2)]. (15) 

Equation (15) shows that when the lighter fluid is on top of the heavier one 
(c < 0) the spatial amplification rate is decreased by gravity. Three-dimension- 
ality (p =k 0 )  decreases the amplification rate further. 

To calculate the wave trail we need 

f ( p )  = -P2/4h+[y/u,+c(I +p2upy" ]x+ i [  - y/ul+c(l-p2u"14y2)]2, 

plJ = 0, f = (1 + cu,/y) yxlu, + i (  - 1 + cul/y) yx/u1, f '  = 0, 
1 - cuz, hxly2 - icuz, hxly2 

1 - 2cu2,Ax/y2 + 2(cu2,hx/y2)2' 
L = h  

To limit the discussion we consider only the asymptotic behaviour of the wave- 
trail amplitude A €or large values of x, for which we obtain 

A N [y/u1(2*hcx)*] exp (1 + cu,/y) yx/zcl + y2y2/2cu2,x. (16) 

Lines of constant amplitude are nearly hyperbolas; i.e., owing to gravity the 
wave trail spreads faster to the sides than without gravity (parabolic spreading). 
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